Petition for an Environmental Assessment Worksheet for the Kinseth Hotel Development at Sundby Road and W Page St., Duluth, MN, Parcels ID Numbered 010-2710-04594 and 010-2710-04575

We, the undersigned, live in and/or own property in the state of Minnesota and request the preparation of an Environmental Assessment Worksheet for the Kinseth Hotel Development at Sundby Road and W Page St. in Duluth/St. Louis County, Minnesota. By signing below, I support the material evidence submitted in the attached petition and believe that because of the nature or location of the proposed project there may be potential for significant environmental effects including but not limited to:

- An increase to the impervious surfaces in the Miller Creek watershed, destroying undeveloped land and wetlands, corresponds with a decline in water quality temperature (warming),
 affecting designated trout stream Miller Creek currently under restoration. Miller Creek, with natural reproducing brook trout, lies appx 150 feet away from the proposed development
 site. Miller Creek watershed already contains a high degree of impervious surfaces in the watershed, with an estimate in ~ 2003 to be at least 22%.
- Additionally, with increased impervious surface area, Miller Creek will flow faster with less infiltration to future, reduced-availability ground water storage. Stream flow rate, especially after rain events, will speed up delivery to the stream and degrade those segments of the trout stream due to deluge and erosion. Studies on impervious surfaces have documented negative effects/degradation to stream biota, when impervious surfaces reach 10%, but degradation can be detected even at approximately 4% impervious surfaces in a watershed.
- As this development lies upwards of the stream, an increase to the Duluth Urban Streams Total Maximum Daily Load of pollutants will increase, contesting the federal mandate to apply the Clean Water Act to ground-level waterways, including but not limited to road and parking lot salt applications, trash, sand, and grit entering the watershed. The replacement of forested acreage with asphalt and concrete will elevate the sodium chloride (road salt) in Miller Creek and the surrounding wetlands. According to aquatic ecologists, once salt gets into the soil or waterway, there are no biological processes that will remove it. Road salt kills aquatic plants and animals, depletes oxygen levels and raises water temperatures. Researchers have linked high chloride levels from road salts to the corroded lead pipes in Flint, Michigan. This pipe corrosion was the primary cause of lead pollution in Flint's drinking water.

Minnesota's Environmental Review Program rules require that a citizen petition contain the [legible] signatures and mailing addresses of at least 100 individuals who reside or own property in the state.

Number	Name (Print Clearly)	ire that a citizen petition contain the [legible] signatures and mailing addresses of at least 100 ind Address (Full Street, City, State, and Zip Code)	Signature Signature
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			